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Abstrat:-Surface can be characterized in terms of its 
material (dielectric) and geometric properties. The 
dielectric properties of the surface are expressed 
primarily by its moisture content, while the 
roughness describes the geometric characteristics 
of surface. Various techniques for information 
retrieval from remotely sensed data have been 
proposed in a number of recent studies. Some of 
them are based on an empirical relationship 
between the measured return signals and the 
ground truth. Because of their development from a 
limited number of observations, these models are 
generally valid only for the conditions under 
which those measured data were taken. These 
models also appear that no dependence on the 
roughness parameter, l - correlation length. In this 
work, the potential of using the polarimetric SAR 
data over surface scatterers in order to invert 
surface parameters is investigated. The 
model-based and image-based inversion schemes 
are investigated and compared; the former is doing 
retrieval from a dynamic learning neural 
network[1] trained with the Advanced Integral 
Equation Model[2-4], while the later is schemed 
from a decomposition of coherency matrix[5]. In 
model based approach, only the surface scattering 
term of total return is used in order to remove the 
vegetation effects. The image based approach 
accounts for nonzero cross-polarzed, 
backscattering as well as depolarization by three 
polarimetric parameters, namely the scattering 
entropy(H), the scattering anisotropy(A), and the 
alpha angle(α ).The features of these two schemes 
are discussed in terms of numerical aspects and 
physical implications of the surface parameters 

being inverted by using experimental E-SAR 
L-band data . We also show the performances of 
inversion and discuss the advantages and 
drawbacks of both schemes. 

I. Introduction 

Much effort has been devoted to improving the 
accuracy of the IEM originally reported by Fung et 
al. [8]. This is mostly done by re-deriving the 
expression without or reducing the assumptions in 
the original development. One significant step 
made forward was the introduction of a transition 
function in the calculation of Fresnel reflection 
coefficients to take spatial dependences into 
account and thus remove the restrictions on the 
limits of surface roughness permittivity. Although 
the approach is kind of heuristic, it proves to 
perfectly work for a broad range of surface 
conditions. A heuristic approach is necessary since 
there are no analytic forms existing for an IEM 
version, called Advanced IEM (AIEM) [1,2], which 
contains many more terms compared to the 
original version, but remains in algebraic form for 
the ease of numerical implementation. In this 
paper, we apply the inversion scheme based on the 
dynamical learning neural network and the AIEM 
model to reconstruct the physical properties of soil 
surface from polarimetric SAR data. Parameters to 
be inverted include surface roughness in 
horizontal and vertical scale and dielectric 
constant which in turn is related to other 
interested geophysical quantities such as moisture 
content of soil. The co-polarized radar 
backscattering coefficients, as knows as sigma 
nought are defined as the average radar cross 
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section per unit ground area in dB. They are used 
as the inputs of the inversion scheme. 

II. Inversion by Neural Network Trained with the 
AIEM (model-based) 

In order to avoid the drawback of slow learning 
process, we use dynamic learning neural network 
(DLNN) in which the necessary training time has 
been significantly reduced and the accuracy of 
process is as high as desired. Its effectiveness and 
usefulness have been demonstrated from a wide 
range of parameters acquired by various 
applications [6,7]. The training of DLNN beings 
with defining the network inputs and outputs that 
are determined depending on applications. For 
inversion problem as in this work, the outputs of 
the network are normalized roughness 
parameters, kL , σk  and medium permittivity, ε . 
It should be focused at this point that the 
determination of the parameter bounds and proper 
selection of the training data are quite significant 
for DLNN training. The data sets should be 
sufficiently representative within the problem 
domain and provide ambiguous data as less as 
possible. In this study, the normalized surface 
correlation length “ kL ” ranges from 1.0 to 10.0 
while the normalized surface roughness r.m.s. 
height “ σk ” ranges from 0.1 to 1.0. And the real 
part value of dielectric constant ranges from 4.0 to 
20.0 as the training dynamic range. 

 
Figure 1. The inputs and outputs setup of DLNN 

III. Inversion by Three Polarimetric Parameters of 
Coherency Matrix (Image-Based) 

The image-based model (Hajnsek et al. 2003) [5] 
for the investigation of surface parameters from 
polarimetric SAR data is used to compare with the 
model-based one. The model is a two component 
model including Bragg term and a dielectric 
constant from the surface roughness, it is 
formulated in terms of the polarimetric entropy H, 

alpha angle α , and anisotropy A, which are 
derived from the eigenvalues and eigenvectors of 
the polarimetric coherency matrix. 

Surface Roughness 

The roughness parameters σk  value are directly 
from their anisotropy values by using a linear 
approximation of the relationship as σk =1-A. 
While the lower σk  values are overestimated 
and higher underestimated, indicates that the use 
of a modified linear relation between A and σk  
may lead to even better inversion results. For small 

σk  values, another regression can be used 
according to σk =1.25-2A. 

Soil Moisture Estimation 

The computed entropy H and the alpha angle α  
values are used to estimate the dielectric constant. 
The estimation is performed by using a lookup 
table, which delivers the dielectric constant as a 
function of the entropy/alpha values and the local 
incidence angle. In this way, the range and 
topography induced variation of the local 
incidence angle across the image can be accounted 
for. 

IV. Experimental Data Analysis 
The well trained DLNN is applied to the 

measured data acquired at L-band (1.3 GHz) from 
E-SAR over the floodplain of River Elbe located in 
North-Eastern Germany [5] as shown in Figure 2. 
At L-band, the spatial resolution of the single look 
complex data is in azimuth about 0.75 m and in 
range about 1.5 m. The data were acquired in April 
and August of 1997 along two 15 km long and 3.2 
km wide strips. Ground data has been collected in 
August 1997 over agriculture test fields with 
difference roughness conditions. Soil moisture 
measurements have been performed on five 
different locations at each test field. The fields are 
viewed with incidence angle (AOI) ranging from 
48 to 50 degrees. The four fields were selected due 
to the vegetation covered and the choices of them 
were constrained by the image-based model (see 
Table I). To activate the DLNN inversion process, a 
total of 5000 training samples are generated using 
AIEM model within the range of parameters as 
mentioned above and three surface correlation 
functions, Gaussian, Exponential and 1.5 power. It 
shows that the varied inversion results using 
different correlated surfaces in AIEM model. All 
the retrieval results (mean value for each test area) 
are listed in Table II. First, we can see the 



deviation of roughness ( σk ) between the 
inversion results and ground truth values. The 
largest deviation occurs for thje case of field A 5/16. 
Gaussian correlated surface matches best for the 
cases. It is interesting to note that 1.5 power 
correlated surfaces fall inbetween Gaussian and 
exponential correlated surfaces that represent two 
extremes of roughness spectra in terms of their 
bandwidth. For horizontal roughness scale, 
correlation length, there are no groud truth 
available, the comparison is excluded. 
Nevertheless, the inversion outputs are listed in 
Table II for reference. Next, we check the retrieved 
dielectric constants which may be related to 
moisture content. It is observed that the inversion 
results agree well with the ground truth. To 
indicate this point more clearly, we plot the 
inverted dielectric constants by model-based and 
image-based along with ground truth values (0-4 
cm and 4-8 cm), as shown in Figure 3. The 
image-based results are out of bound, while the 
model-based results reasonably fall within the 
range of two different depths.  

 
Figure2. Total power image of Elbe-Auen test area 

 
Table I  

Ground measurements for the Elbe-Auen test site. 
Field ID AOI σ  cm σk  'ε 0-4 cm 'ε 4-8cm

A 5/10 49.20 1.66 0.45 10.79 9.28 
A 5/13 50.03 2.1 0.57 5.34 9.84 
A 5/14 49.99 2.77 0.75 4.51 10.82 
A 5/16 48.56 3.5 0.95 5.86 12.19 

Table II 
The inversion results of DLNN 

A5/10 σk  kL  'ε  
Gaussian 0.51106 2.9856 8.8747 

Exponential 0.36842 3.5310 10.552 
1.5 Power 0.39530 3.0111 8.6624 

A5/13  
Gaussian 0.61287 4.12425 7.6096 

Exponential 0.30934 3.9752 5.5954 
1.5 Power 0.36935 4.0491 7.8188 

A5/14  
Gaussian 0.53227 3.7903 7.7906 

Exponential 0.31289 4.0010 5.4194 
1.5 Power 0.35864 4.1336 10.283 

A5/16  
Gaussian 0.61799 3.6400 7.9737 

Exponential 0.37857 3.8496 7.6764 
1.5 Power 0.43115 3.7744 10.025 

 
Figure3. Estimated versus measured dielectric constant for 

Elbe-Auen test sites 

V. Conclusions 
In this work, the inversion results of surface 
parameters estimation between imaged-base model 
and model-based with AIEM model are compared. 
The main advantage of the image-based model is 
that it allows a straightforward separation of 
roughness and dielectric constant estimation. It 
permits robust roughness estimates, widely 
independent on incidence angle variation. 
Although the inversion accuracy of image-based is 
high enough to point out the seasonal variation 
effect [4], the results of model-based perform 



better obviously. Nevertheless, the main limitation 
for surface parameter estimation from polarimetric 
SAR data is the present of vegetation. It increases 
the entropy and decreases the anisotropy, leading 
to overestimation. The estimated value of σk  
using the “linear regression” [9] constrained by 
roughness parameter 1≤σk  is another problem 
which did not stand on physics. Moreover, the 
lacks of imaged-based, surface correlation length 
kL  and imaginary part of dielectric constant, can 
not stand for the surface parameters completely. 
The only drawback of the model-based is that the 
training data sets should be well representative 
with in the problem and the sensitivity of 
backscattering to surface roughness in 
like-polarized for the range of dielectric constant 
should be thought. Furthermore, the computed 
time depends on the number of input training 
samples. It takes less than one minute (over 5000 
samples) in this study for each general correlated 
surface to AIEM model. Further determination of it 
should be carried out experimentally. An inversion 
model based on the DLNN was proposed in an 
effort to better estimation of soil surface parameter 
dielectric constant. Conclusion can be made that 
the proposed model can explain more closely the 
observed data and hence give the best inversion 
results. 
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